Category Archives: Publications

The new division of labor: On our evolving relationship with technology

I, along with Alan Marshall and Robert Hillard, have a new essay published by Deloitte InsightsThe new division of labor: On our evolving relationship with technology1)Evans-Greenwood, P, Hillard, R, & Marshall, A 2019, ‘The new division of labor: On our evolving relationship with technology’, Deloitte Insights, <https://www2.deloitte.com/insights/us/en/focus/technology-and-the-future-of-work/the-new-division-of-labor.html>.. This is the latest in an informal series that looks into how artificial intelligence (AI) is changing work. The other essays (should you be interested) are Cognitive collaboration,2)Guszcza, J, Lewis, H, & Evans-Greenwood, P 2017, ‘Cognitive collaboration: Why humans and computers think better together’, Deloitte Review, no. 20, viewed 14 October 2017, <https://dupress.deloitte.com/dup-us-en/deloitte-review/issue-20/augmented-intelligence-human-computer-collaboration.html>. Reconstructing work3)Evans-Greenwood, P, Lewis, H, & Guszcza, J 2017, ‘Reconstructing work: Automation, artificial intelligence, and the essential role of humans’, Deloitte Review, no. 21, <https://dupress.deloitte.com/dup-us-en/deloitte-review/issue-21/artificial-intelligence-and-the-future-of-work.html>. and Reconstructing jobs.4)Evans-Greenwood, P, Marshall, A, & Ambrose, M 2018, ‘Reconstructing jobs: Creating good jobs in the age of artificial intelligence’, Deloitte Insights, <https://www2.deloitte.com/insights/us/en/focus/technology-and-the-future-of-work/creating-good-jobs-age-of-artificial-intelligence.html>.

Over the last few essays we’ve argued that humans and AI might both think but they think differently, though in complimentary ways, and if we’re to make the most of these differences we need to approach work differently. This was founded on the realisation that there is no skill – when construed within a task – that is unique to humans. Reconstructing work proposed that rather than thinking about work in terms of products, processes and tasks, it might be more productive to approach human work as a process of discovering what problems need to be solved, with automation doing the problem solving. Reconstructing jobs took this a step further and explored how jobs might change if we’re to make the most of both human and AI-powered machine using this approach, rather than simply using the machine to replace humans.

This new essay, The new division of labour, looks at what is holding us back. It’s common to focus on what’s known as the “skills gap”, the gap between the knowledge and skills the worker has and those required by the new technology. What’s often forgotten is that there’s also an emotional angle. The introduction of the word processor, for example, streamlined the production of business correspondence, but only after managers became comfortable taking on the responsibility of preparing their own correspondence. (And there’s still a few senior managers around who have their emails printed out so that they can draft a reply on the back for their assistant to type.) Social norms and attitudes often need to change before a technology’s full potential can be realised.

We can see something similar with AI. This time, though, the transition is complicated as the new tools and systems are not passive tools anymore. We’re baking decisions into software then connecting these automated decisions to the levers that control our businesses: granting loans, allocating work and so on. These digital systems are no longer passive tools, they have some autonomy and, consequently, some agency. They’re not human, but they’re not “tools” in the traditional sense.

This has the interesting consequence that we relate to them as sort-of humans as their autonomy and agency affects our own. They’re consequently taking on roles in the organogram as we find ourselves working for, with and on machines. This also works the other way around, and machines find themselves working for, with and on humans. Consider how a ride-sharing driver has their work assigned to them, and their competence is measured, by an algorithm that is effectively their manager. A district nurse negotiates their schedule with a booking and work scheduling system. Or it might be more of a peer relationship, such as when a judge consult a software tool when determining a sentence. We might even find humans and machines teaching each other new tricks.

As with the word processors, we can only make the most of this new technology if we address the social issues. With the word processor it was managers seeing typing as being below their station. The challenge with AI is much more difficult though, as making the most of this new generation of technology requires us to value humans to do something other than complete tasks.

The essay uses the example of superannuation. Nobody wants retirement financial products, they want a happy retirement, the problem is that ‘happy retirement’ is no more than a vague idea for most of us. We need to go on a journey through sorting out if what we think will make us happy will actually make us happy, setting reasonable expectations, and adjusting our attitudes and behaviours to balance our life today with the retirement we want to work toward. This is something like a Socratic dialogue, a conversation with others where we create the knowledge of what ‘happy retirement’ means for us. Only then can we engage the robots-advisor to crunch the numbers and create an investment plan.

The problem is the disconnect between how the client and firm derive value from this journey. The client values discovering what happy retirement means, and adjusting their attitudes and behaviours to suit. The firm values investments made. This disconnect means that firms focus their staff on clients later in life, once the kids have left home and the house is paid off. The client, on the other hand, would realise the most value by engaging early to establish the attitudes and behaviours that will enable the magic of compound interest to work.

As we say in the conclusion to the report:

However, successfully adopting the next generation of digital tools, autonomous tools to which we delegate decisions and that have a limited form of agency, requires us to acknowledge this new relationship. At the individual level, forming a productive relationship with these new digital tools requires us to adopt new habits, attitudes, and behaviors that enable us to make the most of these tools. At the enterprise level, the firm must also acknowledge this shift, and adopt new definitions of value that allow it to reward workers for contributing to the uniquely human ability to create new knowledge. Only if firms recognize this shift in how value is created, if they are willing to value employees for their ability to make sense of the world, will AI adoption deliver the value they promise.

You can find the entire essay over at Deloitte Insights.

References   [ + ]

1. Evans-Greenwood, P, Hillard, R, & Marshall, A 2019, ‘The new division of labor: On our evolving relationship with technology’, Deloitte Insights, <https://www2.deloitte.com/insights/us/en/focus/technology-and-the-future-of-work/the-new-division-of-labor.html>.
2. Guszcza, J, Lewis, H, & Evans-Greenwood, P 2017, ‘Cognitive collaboration: Why humans and computers think better together’, Deloitte Review, no. 20, viewed 14 October 2017, <https://dupress.deloitte.com/dup-us-en/deloitte-review/issue-20/augmented-intelligence-human-computer-collaboration.html>.
3. Evans-Greenwood, P, Lewis, H, & Guszcza, J 2017, ‘Reconstructing work: Automation, artificial intelligence, and the essential role of humans’, Deloitte Review, no. 21, <https://dupress.deloitte.com/dup-us-en/deloitte-review/issue-21/artificial-intelligence-and-the-future-of-work.html>.
4. Evans-Greenwood, P, Marshall, A, & Ambrose, M 2018, ‘Reconstructing jobs: Creating good jobs in the age of artificial intelligence’, Deloitte Insights, <https://www2.deloitte.com/insights/us/en/focus/technology-and-the-future-of-work/creating-good-jobs-age-of-artificial-intelligence.html>.

Digitalizing the construction industry: A case study in complex disruption

I, along with a Robert Hillard and Peter Williams, have a new essay published by Deloitte Insights, Digitalizing the construction industry: A case study in complex disruption1)Evans-Greenwood, P et al. 2019, ‘Digitalizing the construction industry: A case study in complex disruption’, Deloitte Insights,<https://www2.deloitte.com/insights/us/en/topics/digital-transformation/digitizing-the-construction-industry.html>.. The case study elaborates on one of the examples we used in Your next future.2)Evans-Greenwood, P & Leibowitz, D 2017, Your next future: Capitalising on disruptive change, Deloitte University Press, <https://dupress.deloitte.com/dup-us-en/focus/disruptive-strategy-patterns-case-studies/capitalising-on-disruptive-change.html>.

In that essay we made the distinction between simple disruption – disruption due to a particular disruptive technology, the thing the comes to mind first for most people when they think of disruption – and complex disruption – where the disruption is due to a confluence of (mainly social) factors. Think the telegraph (simple disruption) vs the global multi-modal container network (complex disruption). Many current disruptions – artificial intelligence, blockchain, etc – tend to be complex (rather than simple) disruption. We’re seeing an environmental shift, as individuals and firms realise that the current environment (with many things available cheap and on-demand) presents opportunities to find new ways to use old technologies to create new ‘disruptive’ operating models, rather than there being a massive wave of new technologies as many pundits claim.

One of examples we used to illustrate the shift was the building industry. There’s a lot of noise about technologies such as 3D printing or brick-laying robots disrupting the building industry, but this is unlikely as the industry’s product is the building process, not the buildings it produces. Builders will simply integrate these new technologies into their process if and when they become commercially viable. The invention of a new building process, however, where a builder uses old technologies in new ways to create a new, and superior, operating model has the potential to disrupt the industry.

Your next future mentioned a design for manufacture and assembly (DFMA) process – where a building is completely modelled in 3D before the model is split up and feed to numerically controlled machines in a factory, with the components shipped to the construction site for assembly – as potentially disruptive. Versions of the process current at the time of publication were roughly 30% faster than a conventional build (due to moving some work to the controlled environment of a factory where rain delays aren’t a problem, and enabling the optimisation of vertical transport on site). They were slightly cheaper, and had the potential to be much cheaper. And there’s the possibility to integrating new materials into the process, materials which couldn’t be used in a conventional process due to on-site restrictions.

Since that essay was published what was then a potential disruption looks like it might be about to tip into actual disruption. This is the subject of the case study.

In 2018 a project in the Melbourne CBD hit problems as the cranes and trucks required to move materials onto the site would block a lane that was the sole access to the homes of many local residents. The solution the builder (Hickory) came up with was to build at night: the machinery would arrive around 9 pm and lift DFMA components (via the Hickory Building System) onto the site, installing an entire floor in four-six hours. Once a floor is complete the floor below is weather-proof and there are no lives edges. The machines are gone before the residents wake. During the day the trades go through the completed floor and finish the interior. There was some skepticism as building is considered noisy, though a trial one night showed that the residents would hardly notice the nighttime construction.

And here’s where we might be seeing a potential complex disruption crystallise into actual disruption. The build proceeded, and the city council was so happy they are considering that all high-rise building to be done at night. This would, with the stroke of a pen, bar conventional builders from the market until they undertake the multi-year journey to develop their own operating model based a DFMA process.

The case study looks at the development of DFMA building processes, the challenges they faced and how they’ve been overcome, and the potential impact on the market. It also looks at how firms might also anticipate similar complex disruptions in their own market, pointing out that conventional market-scanning practices looking for disruptive technologies can actually be counter productive as they cannot predict complex disruption, and we’re in a market with there appears to be more complex disruption than simply disruption.

It’s an interesting story, and a local story which is nice, so head over the the Deloitte web site to read Digitalizing the construction industry: A case study in complex disruption.

References   [ + ]

1. Evans-Greenwood, P et al. 2019, ‘Digitalizing the construction industry: A case study in complex disruption’, Deloitte Insights,<https://www2.deloitte.com/insights/us/en/topics/digital-transformation/digitizing-the-construction-industry.html>.
2. Evans-Greenwood, P & Leibowitz, D 2017, Your next future: Capitalising on disruptive change, Deloitte University Press, <https://dupress.deloitte.com/dup-us-en/focus/disruptive-strategy-patterns-case-studies/capitalising-on-disruptive-change.html>.

Your next future: Capitalising on disruptive change

I and a coauthor have a new report out on DU Press: Your next future: Capitalising on disruptive change.1)Evans-Greenwood, P & Leibowitz, D 2017, Your next future: Capitalising on disruptive change, Deloitte University Press, <https://dupress.deloitte.com/dup-us-en/focus/disruptive-strategy-patterns-case-studies/capitalising-on-disruptive-change.html>. Disruption is something we’d been puzzling for some time as it’s a fuzzy and poorly defined concept despite all the noise it generates. It’s also concerning that few, if any, of the theories have much predictive power.

Our contribution is fairly straight forward.

First we make that point that disruption, as the term is commonly used, covers a broad range of phenomena. This creates tension between our desire for a comprehensive definition, one encompassing this broad scope, and the need for a precise definition, so that we are all clear on what we’re talking about.  Many academic theories (such as Clayton Christensen’s) come unstuck when it’s pointed out that the theory might refer to some disruptive phenomenon, but they don’t account for many other phenomena that can also be considered disruptive.

Consequently we must acknowledge that disruption operates are at least three different levels of abstraction:

  • At the highest level are long-term whole-of-economy shifts that disrupt all of us. The shift from stocks to flows – which we try and measure in the Shift Index2)Evans-Greenwood, P & Williams, P 2014, Setting aside the burdens of the past: The possibilities of technology-driven change in Australia, Deloitte Australia, viewed 26 October 2017, <https://www2.deloitte.com/au/en/pages/technology/articles/shift-index-key-findings.html>. – is one of these.
  • At the mid-level are disruptions focused on a sector or industry. Our colleagues in the US have be cataloging these in the Patterns of Disruption series.3)Hagel, ,J, Seely Brown, J, Wooll, M, & de Maar, A 2015, Patterns of disruption: Anticipating disruptive strategies in a world of unicorns, black swans, and exponentials, Deloitte University Press, <http://dupress.com/articles/ anticipating-disruptive-strategy-of-market-entrants/>.
  • At the lowest level are the things that disrupt us, our firm.

It was the observation that value used to be objective and defined relative to the market, in terms of product feature-function, but now value is more commonly defined subjectively, relative to the firm and the firm-customer relationship, that prompted us to look at disruption with a wider lens and make this subjective disruption the subject of a our essay.

Next we wanted to create a model of disruption that was predictive, which could be fed into a strategy-formation process to enable a firm to identify concrete actions that would enable a firm to prepare for a (potential) disruption and either capitalise on it or defuse it (i.e. neuter the disruption). The resulting model relies on three observations.

  • Disruption is degenerate. A single outcome, a disruption, might be triggered by a large number of different processes. This means that will be impossible to understand disruption by identifying and analysing individual contributors without considering the complex relationships between them.
  • Disruption is constructive. While technology is important to a disruption, technology alone is not enough and we need to also consider social and commercial forces as well that come together to trigger a disruption.
  • Disruption is subjective. A new technology might disrupt our sector or industry, but it may not disrupt us. The reverse is also true. Our concern is disruption to our business, not markets (via patterns of disruption), the economy (via the Big Shift) or disruption in general.

The result a model that shows us why we we cannot predict disruption by identifying ‘disruptive technologies’, but which does enable us to do something about shaping how we approach disruption.

We’re pretty happy with the result, which you can find at DU Press.

References   [ + ]

1. Evans-Greenwood, P & Leibowitz, D 2017, Your next future: Capitalising on disruptive change, Deloitte University Press, <https://dupress.deloitte.com/dup-us-en/focus/disruptive-strategy-patterns-case-studies/capitalising-on-disruptive-change.html>.
2. Evans-Greenwood, P & Williams, P 2014, Setting aside the burdens of the past: The possibilities of technology-driven change in Australia, Deloitte Australia, viewed 26 October 2017, <https://www2.deloitte.com/au/en/pages/technology/articles/shift-index-key-findings.html>.
3. Hagel, ,J, Seely Brown, J, Wooll, M, & de Maar, A 2015, Patterns of disruption: Anticipating disruptive strategies in a world of unicorns, black swans, and exponentials, Deloitte University Press, <http://dupress.com/articles/ anticipating-disruptive-strategy-of-market-entrants/>.

Reconstructing jobs

Some coauthors and I have a new report out: Reconstructing jobs: Creating good jobs in the age of artificial intelligence.  This essay builds on the previous two from our “future or work” series,  Cognitive collaboration and Reconstructing work, published on DU Press (now Deloitte Insights) as part of Deloitte Review #20 (DR20) and #21 (DR21) respectively.

Cognitive collaboration‘s main point was that there are synergies between humans and computers, and that solution crafted by a human and computer in collaboration is superior to, and different from, a solution made either human or computer in isolation. Reconstructing work built on this, pointing out the difference between human and machine was not in particular knowledge or skills exclusive to either; indeed, if we frame work in terms of prosecuting tasks than we must accept that there are no knowledge or skills required that are uniquely human. What separates us from the robots is our ability to work together to make sense of the world and create new knowledge, knowledge that can then be baked in machines to make it more precise and efficient. This insight provided the title of the second essay – Reconstructing work – as it argued that we need to think differently about how we construct work if we want the make the most of the opportunities provided by AI.

This third essay in the series, Reconstructing jobs, takes a step back and looks these jobs of the future might look like. The narrative is built around a series of concrete examples – from contact centres through wealth management to bus drivers – to show how we might create this next generation of jobs. These are jobs founded on an new division of labour: humans creating new knowledge, making sense of the world to identify and delineate problems; AI plans solutions to these problems; and good-old automation to delivers. To do this we must create good jobs, as it is good jobs that make the most of our human abilities as creative problem identifiers. These jobs are also good for firms as, when combined suitably with AI, they will provide superior productivity. They’re also good job for the community, as increased productivity can be used to provide more equitable services and to support *learning by doing* within the community, a rising tide that lives all boats.

The essay concludes by pointing out that there is no inevitability about the nature of work in the future. As we say in the essay:Clearly, the work will be different than it is today, though how it is different is an open question. Predictions of a jobless future, or a nirvana where we live a life of leisure, are most likely wrong. It’s true that the development of new technology has a significant effect on the shape society takes, though this is not a one-way street, as society’s preferences shape which technologies are pursued and which of their potential uses are socially acceptable.

The question is then, what do we want these jobs of the future to look like?

Reconstructing work

Some coauthors and I have a new(wish) report out – Reconstructing work: Automation, artificial intelligence, and the essential role of humans – on DU Press as part of Deloitte Review #21 (DR21). (I should note that I’ve been a bit lax in posting on this blog, so this is quite late.)

The topic of DR21 was ‘the future of work’. Our essay builds on the “Cognitive collaboration” piece published in the previous Deloitte Review (DR20).

The main point in Cognitive collaboration was that there are synergies between humans and computers. A solution crafted by a human and computer in collaboration is superior to, and different from, a solution made either human or computer in isolation. The poster child for this is freestyle chess where chess is a team sport with teams containing both humans and computers. Recently, during the development of our report on ‘should everyone learn how to code’ (To code to not to code, is that the question? out the other week, but more on that later), we found emerging evidence that this is a unique and teachable skill that crosses multiple domains.

With this new essay we started by thinking about how one might apply this freestyle chess model to more pedestrian work environments. We found that coming up with a clean division of labour between – breaking the problem into seperate tasks for human and machine – was clumsy at best. However if you think of AI as realising *behaviours* to solve *problems*, rather than prosecuting *tasks* to create *products*, then integrating human and machine is much easier. This aligns better with the nature of artificial intelligence (AI) technologies.

As we say is a forthcoming report:

AI or ‘cognitive computing’ […] are better thought of as automating behaviours rather than tasks. Recognising a kitten in a photo from the internet, or avoiding a pedestrian that has stumbled onto the road, might be construed as a task, though it is more natural to think of it as a behaviour. Task implies a piece of work to be done or undertaken, an action (a technique) we choose to do. Behaviour, on the other hand, implies responding to the changing world around us, a reflex. We don’t choose to recognise a kitten or avoid the pedestrian, though we might choose (or not) to hammer in a nail when one is presented. A behaviour is something we reflexively do in response to appropriate stimulus (an image of a kitten, or even a kitten itself poised in-front of us, or the errant pedestrian).

The radical conclusion from this is that there is no knowledge or skill unique to a human. That’s because knowledge and skill – in this context – are defined relative to a task. We’re at a point that if we can define a task then we can automate it (given cost-benefit) so consequently there are no knowledge or skills unique to humans.

What separates us from the robots is our ability to work together to make sense of the world and create new knowledge, knowledge that can then be baked in machines to make it more precise and efficient. If we want to move forward, and deliver on the promise of AI and cognitive computing, then we need to shift the foundation of work. Hence the title: we need to “reconstruct work”.

The full essay is on the DP site, so head over and check it out.

Cognitive collaboration

I have a new report out on DU PressCognitive Collaboration: Why humans and computers think better together – where a couple of coauthors and I wade into the “will AI destroy the future or create utopia” debate.

Our big point is that AI doesn’t replicate human intelligence, it replicates specific human behaviours, and the mechanisms behind these behaviours are different to those behind their human equivalents. It’s in these differences that opportunity lies, as there’s evidence that machine and human intelligence are complimentary, rather than in competition. As we say in the report “humans and machines are [both] better together”. The poster child for this is freestyle chess.

Eight years later [after Deep Blue defeated Kasparov in 1997], it became clear that the story is considerably more interesting than “machine vanquishes man.” A competition called “freestyle chess” was held, allowing any combination of human and computer chess players to compete. The competition resulted in an upset victory that Kasparov later reflected upon:

The surprise came at the conclusion of the event. The winner was revealed to be not a grandmaster with a state-of-the-art PC but a pair of amateur American chess players using three computers at the same time. Their skill at manipulating and “coaching” their computers to look very deeply into positions effectively counteracted the superior chess understanding of their grandmaster opponents and the greater computational power of other participants. Weak human + machine + better process was superior to a strong computer alone and, more remarkably, superior to a strong human + machine + inferior process. . . . Human strategic guidance combined with the tactical acuity of a computer was overwhelming.1)Garry Kasparov, “The chess master and the computer,” New York Review of Books, February 11, 2010, www.nybooks.com/articles/2010/02/11/the-chess-master-and-the-computer/. View in article

So rather than thinking of AI as our enemy, we should think of it as supporting us in our failings.

We’re pretty happy with the report – so happy that we’re already working on a follow on – so wander over to DU Press and check it out.

References   [ + ]

1. Garry Kasparov, “The chess master and the computer,” New York Review of Books, February 11, 2010, www.nybooks.com/articles/2010/02/11/the-chess-master-and-the-computer/. View in article

Bitcoin, Blockchain, and Distributed Ledgers: What questions should we be asking?

Bitcoin, Blockchain & distributed ledgers: Caught between promise and reality

The latest report from the Centre for the Edge is out, Bitcoin, Blockchain & distributed ledgers: Caught between promise and reality. This report follows on from the one published in February, The Future of Exchanging Value: Cryptocurrencies and the trust economy (FoEV).

In the FoEV we looked at cryptocurrencies and Bitcoin, however we had to set aside a discussion on the technologies that underpin cryptocurrencies and their broader affect on society as the report was already quite long.

With Bitcoin, Blockchain & distributed ledger we pick up where we left off, and take close look at the opportunities and problems created by these technologies, and their regulatory implications.

We didn’t want this report to be yet-another explainer, since there’s already a lot of those out there, with the ensuing arguments over technology that invariably seem to follow them.

So rather than focus on the technology – the solution space – we focus on the potential applications – the problem space, to try and understand not just what is possible, but what is practical. This is resulted in a fail compact and pragmatic report focused on a few key areas, as we point out in the report’s introduction.

In From Bitcoin to Distributed Ledgers, we compare the Bitcoin’s ledger with the more familiar physical ledgers that preceded it, and develop the concept of a distributed ledger7 de ned in terms of the problems solved rather than the technologies used.

In A map of the distributed ledger landscape, we identify questions that should be asked when considering a new distributed ledger, creating a map of the solution landscape.

In Regulation, we explore the potential regulatory implications of these solutions, though we only focus on what is different with distributed ledgers. How does one regulate something no single person or organisation is accountable for?

In Applications, we review the strengths and weaknesses identi ed in the previous two sections to develop an understanding of what a distributed ledger can be and what it can’t be.

Finally, in Conclusions, we look at the technology’s potential and what the future might hold.

You can find the report on the Deloitte Australia web site.

The Future of Exchanging Value: Cryptocurrencies and the trust economy

FoEV2_coverOur latest piece at Centre for the Edge is out: The Future of Exchanging Value.

This report started life as a followup to a report we published in 2012. As we say in the current report:

Our findings in that report centred on the realisation that we were reaching the end of the initial build-out
of a digital payments infrastructure. The task of provisioning the infrastructure merchants require to accept real-time digital payments, or for two individuals to settle a debt, was largely complete. Consequently, our focus had shifted to streamlining the buying journey – from the pieces and parts to the whole.

Our key point then was that the future of exchanging value would be shaped by social forces – how payments fit into the end-to-end consumer experience – rather than the technological challenge of deploying yet-another generation of payments solutions.

This new report, which was intended to be a short update, when in an entirely different and much more interesting direction.

Our key insight this time is that we’re all thinking about money the wrong way.

It’s common to assume that we use money (cash, currency…) to build trust relationships. This assumes that our adoption of money stems from the coincidence of wants. I need shoes. You have shoes. You want a fish. I have a chicken. We use money to bridge the gap.

The problem is that this assumption is incorrect. As David Graeber points out in Debt: The First 5,000 Years, debt came before barter and the coincidence of wants. Most folk in antiquity didn’t need money. They knew everyone they interacted with, and could rely on the community to enforce the collection of a debt if need be. Money’s first use was as a measure of value, typically to help calculate damages in a criminal or civil manner. Communities had carefully drawn up lists to capture exactly what you owed, in a convenient currency, someone if you destroyed their house, stole their food. In Somalia, for example, they use camels (commodity money). The other uses of money – as a medium of exchange and store of value – came later.

This is a fascinating fact, is it points out that we have the consumer-merchant relationship backward. We’re focusing on the transaction when we should be focusing on the relationship. The future of payments is not micropayments and tap-and-go. Indeed, the future of payments might be to use a loyalty scheme (a complimentary currency) to anchor the relationship and then move the transactions from the centre of the relationship to the edge. This ties is cultural preferences that we have, and which equate money and transactions as “dirty”. The future of payments might be not to have payments at all.

Bitcoin and the whole cryptocurrency thing is influenced by this too. There’s a huge amount of noise in this area at the moment, and everyone one is waiting for the killer app that will drive Bitcoin (or another cryptocurrency) into mass adoption. If, however, you view Bitcoin adoption as a cultural problem, rather than the search for a killer app, then you end up at the conclusion that no cryptocurrency will become much more than a large niche. The best equivalent in the current environment that we’re all familiar with would be a large frequent flyer scheme. It’s hard to scale trust, even with technology support, and these frequent flyer schemes seem to up near a nature limit.

There is one use case for currencies growing larger, though: when a sovereign nation mandates that you pay taxes in a specific currency. This trick is behind all the major currencies, and was used by the colonial powers to pull conquered land into their monetary system. Acquire currency to pay tax, or we send the bruisers around.

We conclude in the report that the best analogy for cryptocurrencies is rum and cigarettes. Rum was used in Australia’s early days when there wasn’t enough government issued currency to go around. Cigarettes were used by prisoners or war as they had few other options.

We can expect cryptocurrencies to see some adoption in countries where the population doesn’t trust – or can’t access – the national currency. Argentina springs to mind. Cryptocurrencies are mush less useful in other countries with mature and stable economies.

A similar argument can be made against cryptocurrencies as internal reserve currencies. (And that argument is in the report.)

There’s a lot more in the report, and I’ve been told that it’s a bit of a ripping yard. Go grab a copy and read it.

Redefining education

Our latest piece at the Centre for the Edge is out: Redefining education.1)Peter Evans-Greenwood, Peter Williams, Kitty O’Leary (2015) The paradigm shift: Redefining education, Deloitte Australia.

When we did an Australian version of the Shift Index2)The Shift Index in Slides @ PEG we saw that while Australia has a pretty good digital foundation and society seems to be adapting to the shift fairly well, we’re not realising as much value as it could be. Or put another way, while we’re using digital technology to create new knowledge flows, we’re not as proficient at realising their value.

With the Shift Index complete we turned our attention to education, as it seemed logical that education would be the most effective fulcrum to use to improve our performance.

We took the major trends from the Shift Index – the move from stocks to flows, and from push to pull – and, as a bit of a thought experiment, applied them to the education sector to see what we came up with. This resulted in a slide deck The Future of the Education Sector3)The Future of the Education Sector @ PEG and now this report.

The major finding in the report is that our relationship with knowledge is changing, and consequently our relationship with education is changing. The snappy version of this is “Why remember what you can google?”. The longer story has interesting implications for the education sector as by changing what it means to be educated has all sorts of potential knock-on effects for education and educators.

The report is our attempt move the current debate beyond pedagogy and edu-tech, funding and Australia’s ranking on international league tables to consider if our changing relationship to knowledge (the shift from knowledge stocks to knowledge flows, highlighted in the report) is changing the role and purpose of education and (by extension) the education sector.

The report is on Deloitte’s web site, and I’d love to year your throughs.

References   [ + ]

1. Peter Evans-Greenwood, Peter Williams, Kitty O’Leary (2015) The paradigm shift: Redefining education, Deloitte Australia.
2. The Shift Index in Slides @ PEG
3. The Future of the Education Sector @ PEG

Setting aside the burdens of the past

The first report from the Australian Centre for the Edge on the Australian Shift Index, Setting aside the burdens of the past: The possibilities of technology-driven change in Australia, has just been published. (Press release here.)

We’ve worked hard on this over the last six months or so and I’m very happy with this report as an introduction to what we’ve done. If you’re interested in how technology is driving change both in business and in society in general, then I highly recommend that you head over and grab yourself a copy. (And if we’re in something like the same neighbourhood I’d love to catch up for a coffee to discuss. Or feel free to leave a comment below.)

The Shift Index was created as a tool to help us understand if the rapid pace and increasing uncertainty we feel in the business and social spheres is real, or if it is just an illusion created by the always-on environment we live. (This is a bit like how nationalised news brings us stories of shootings in other regions leading us to think that crime has increased, when in actual fact crime has been decreasing.)

As we say in the report:

The world is changing faster than ever. However, we can only respond to and manage a change if we can measure and understand it. If we want to respond as a community, then we need to find a way to quantify the change. We need to ask ourselves whether the perceived change is real, and if it is, how we can capitalise on it.

The short answer is that the world is definitely changing and that Australia, Australians and Australian businesses are successfully adapting to the changes. We can’t, however, rest on our laurels as the drivers of change are still present and it doesn’t look like they will dissipate for some time.

The concept behind the Shift Index is that developments in digital infrastructure (computing, storage and networks) is driving increases in information flows, and that these information flows are reconfiguring society by tipping the balance of power from the merchant to the consumer.

The framework we used as our starting point was developed by the US Center for the Edge, founded by John Hagel and John Seely Brown. The US Shift Index was developed in 2009 and has been updated each year since then.

Our goal with the Australian Shift Index was to take the US framework and build a comparable index for Australia, allowing us to take the lessons learned from the US index and translate them to our local context. At the same time, we tailored the index – tweaking or changing some of the metrics used – to create a version that is uniquely Australian and which can provide us with insight into the particular challenges we face here.

The methodology defines three groups of metrics:

  • The Foundation Index measures the price-performance of computing, storage and network technologies, the penetration of these technologies into society, and change in regulation to support the adoption of these technologies. This is the lead indicator in the Shift Index.
  • The Flow Index measures the resulting increase in information flows in terms of virtual flows (mobile phone and internet usage), physical follows (attendance at conferences, business travel, and money transfers) and flow amplifiers (social media and the like).
  • The Impact Index measures the impact of these changes across the Australian market (competitive intensity, labour productivity and stock price volatility), firms (asset profitability and the like) and people (consumer power, brand disloyally, returns to talent, and increased in executive turnover). This is the lag indicator for the Shift Index.

The result is three high-level metrics that quantify the the drivers for the change, the change itself, and it’s impact.

AU2012shiftindex

Image source: Centre for the Edge

There’s ten major findings in the report:

  • Fast adopters: Australians have a good track record for adopting new technology. Our challenge is to continue adapting, and to find opportunities to leverage these technologies within our institutions.
  • Tech-driven change: The permeation of cheap, powerful computing, communications and storage technologies is driving change and will continue to do so into the foreseeable future.
  • Knowledge flows: New technology has resulted in new flows of information at unprecedented volumes.
  • Higher competition: The Australian market has become more competitive as a result of new technology and knowledge flows.
  • Capital over labour: Australia’s focus has shifted away from labour and towards investment in new technologies for more efficient workflows.
  • Knowledge economy: Australia has shifted from an industrial and agricultural economy to a creative, service-based economy.
  • Unrealised potential: There is a big gap between our technological capabilities and the way we currently use technology to solve problems.
  • Economic strength: Australia’s economy is strong and demonstrates better asset profitability than the US.
  • Recession-proof: The global downturn in 2008 was only a pause in our progress and has not halted Australia’s transformation.
  • Future success: Our continued prosperity depends on how well our knowledge workers can find new ways of using technology to solve problems.

These ten findings are only the tip of the iceberg though. While the report answers some interesting questions, or raises even more questions, questions that we intend to delve into further.

Image source: macinate.